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Abstract—Data streams such as traffic flows, stock prices,
and electricity consumption are endless time-series data from
time-varying environments, and concept drift in non-stationary
data streams is an important problem. To forecast the short-
range future values of such data streams accurately in real
time, we propose an online prediction method called Online
Prediction Of Stream data with Self-Adaptive Memory (OPOS-
SAM). OPOSSAM introduces adaptive memory management
consisting of short-term memory and long-term memory to
manage time-series segments, and forecasts future values by
local regression based on similar time-series segments. In
order to deal with concept drift, OPOSSAM automatically
adjusts the prediction model learned from short-term memory
by considering the prediction model learned from the entire
memory as the prior model. In addition, OPOSSAM keeps
long-term memory consistent by reducing redundant samples
with large prediction errors. Experimental results showed a
reduction in prediction errors compared with baseline methods
on real-world datasets in the different domains of traffic flow,
stock prices, and electricity consumption.

Keywords-Data stream; Online prediction; Short-range fore-
casting; Concept drift; Biased L2-regularization

I. I NTRODUCTION

Data streams are endless non-stationary time-series data
from time-varying environments, and real-time analysis of
such data is the foundation of Internet of Things technol-
ogy [1]. The analysis of such data streams requires (1) using
a finite memory capacity to handle an infinite volume of
data and (2) dealing with concept drift for non-stationary
data characteristics.

Concept drift occurs in several patterns, such as sudden
drift, incremental drift, and recurring drift [2], and ma-
chine learning techniques that can deal with concept drift
have attracted growing interest. A sliding window, which
stores the most recent part of the data stream in short-
term memory, has been widely adopted to handle sudden
and incremental concept drift. However, it is difficult to
determine the window size for non-stationary data streams
because of the following issues: (a) it is difficult to handle
sudden changes when the window size is too large, and (b)
stationary data streams are vulnerable to noise when the
window size is too small. In addition, if similar concepts
reoccur after a long period of time, the sliding window
cannot utilize former concepts. To overcome these problems,
Self-Adjusting Memory (SAM) has been proposed as a
classification method with both Long-Term Memory (LTM)
and Short-Term Memory (STM) [3], [4]. SAM uses multiple

different window sizes in STM, compresses older stream
data into LTM, and adaptively uses multiple sample sets ob-
tained by combining them. This provides high classification
accuracy for synthetic datasets with heterogeneous concept
drift and for real-world datasets, without tuning of meta-
parameters among datasets.

For data streams such as traffic flows, stock prices,
and electricity consumption, online prediction methods are
needed to forecast short-range future values accurately in
real time. As an example of traffic flow prediction, ap-
plications such as real-time car navigation systems and
advanced traffic management systems need to accurately
forecast traffic flows several time steps in advance by using
traffic flow data delivered at 5-min intervals [5], [6]. One
approach to such prediction of future values is based on
regression from recent time-series stored using a sliding
window. To improve accuracy, existing methods that use
non-linear regression [7] and adaptive window sizes [8] have
been proposed. Another approach is based on past history
and stores time-series segments in order to forecast future
values using segments similar to the current segment [9].
This approach has been used to forecast traffic flows, stock
prices, and electricity consumption by combining it with
domain-specific approach.

However, it is difficult for existing methods such as [7],
[8], [9] to accurately forecast various data streams that
have heterogeneous concept drift. Existing regression-based
methods using a sliding window do not utilize past informa-
tion. In contrast, existing history-based methods collect the
history in a fixed period before prediction, which makes it
difficult to take concept drift into account. Although SAM
considers concept drift and manages past information, it is
aimed at classification rather than online prediction, and it is
not appropriate to apply SAM to online prediction from the
perspectives of maintaining LTM consistency and requiring
multiple learning models based on various sample sets.

In this paper, we propose the Online Prediction method
Of Stream data with Self-Adaptive Memory (OPOSSAM)
in order to accurately forecast short-range future values
from various data streams under heterogeneous concept drift.
Inspired by SAM [3], [4], we introduce adaptive memory
management, consisting of STM and LTM. to online predic-
tion. The memory manages time-series segments from the
data stream, and the local regression of similar time-series
segments is applied based on [9]. OPOSSAM keeps LTM



consistent by reducing redundant samples with large predic-
tion errors. Furthermore, the regularization-based adaptation
of OPOSSAM adjusts the prediction model learned from
STM by considering the prediction model learned from
the entire memory as the prior model. The approach not
only avoids overtraining from STM, which may not store
enough samples, but also adjusts the importance between
STM and LTM based on concept drift. In addition, because
OPOSSAM precomputes the prediction model, adjustments
can be calculated efficiently without the need to learn many
models from scratch.

The main contributions are summarized as follows:

• We propose OPOSSAM, which

– introduces adaptive memory management consist-
ing of STM and LTM to online prediction;

– keeps LTM consistent and redundant in a way
appropriate to online prediction based on local
regression; and

– uses regularization-based adaptation to adjust the
importance between STM and LTM in order to
precompute the prediction model.

• We confirm superiority in terms of accuracy by

– demonstrating that the mechanism of OPOSSAM
is effective by using simple synthetic datasets; and

– reducing prediction errors compared with baseline
methods on real-world datasets in the different
domains of traffic flow, stock prices, and electricity
consumption.

This paper is an extended version of our previous
work [10], and is organized as follows. Section II provides
an overview of related work. In Section III, we introduce
the problem setting. In Section IV, we propose OPOSSAM.
Section V shows the experiments, and our conclusions are
provided in Section VI.

II. RELATED WORK

Regression-based predictors using a sliding window of
fixed size are widely used in online prediction methods.
Although linear predictors such as AR are well known, their
accuracy tends to be low for non-linear real-world data.
To improve accuracy, non-linear regression-based methods
such as support vector regression, kernel ridge regression,
and neural networks have been proposed [6], [7], [11].
Learning of non-linear regression-based predictors is time-
consuming for real-time forecasting in some cases. To
solve this problem, a predictor that learns the kernel ridge
regression in an incremental fashion by employing a sliding
window has been proposed [7]. However, these methods
discard old information from the sliding window. In addition,
it is difficult to satisfy both robustness against noise and
adaptation to sudden drift when using a fixed window size.

History-based predictors have also been proposed in order
to improve accuracy. Although domain-specific knowledge

such as large traffic flows during rush hour can be well
utilized, this is not generalizable [5], [9]. Another approach
stores past time-series segments and forecasts future val-
ues based on previous segments that are similar to the
current segment. This approach is widely used in several
domains, such as traffic flows, stock prices, and electricity
consumption, and achieves high accuracy in each domain
[9], [12], [13]. However, the existing methods based on this
approach store segments in fixed intervals before the start
of forecasting, and always use them during prediction. As a
result, the old information is always used even when concept
drift occurs. The obvious solution is to manage time-series
segments from the data stream by using a sliding window
of fixed size. However, old information is discarded once it
has moved out of the sliding window.

Online prediction methods dealing with concept drift have
been proposed. In [14], [15], [16], [17], regression based
on decision tree models was proposed for data streams.
However, these methods do not utilize LTM. In addition,
they assume the case of forecasting values one step ahead
based on multivariate data streams, which is appropriate
when the number of variables is large. In contrast, we focus
on data streams where the number of variables is small
(typically univariate streams) and forecastingN step ahead
whereN is a small number. The method in [18] combines
prediction with a multiple time-scale structure, and selects
a predictor that fits the current environment for each time-
scale. However, this is aimed at long-range forecasts, not
short-range forecasts. In addition, predictors are generated in
real time, and the number of predictors may increase without
bound. In contrast, an online prediction method that adjusts
the sliding window size without explicitly detecting concept
drift has been proposed [8]. This delivers higher accuracy
than methods based on [19]. However, since it uses only
STM and discards older information, it cannot utilize LTM.
In addition, the predictor is linear, and the accuracy has not
been compared with that of non-linear methods.

Recently, SAM [3], [4] has been proposed as a classifi-
cation method based on thek-nearest neighbor algorithm.
SAM utilizes multiple different-sized window in STM like
[8], compresses older information in LTM for recurring drift,
and combines them dynamically. However, application in
forecasting is difficult for the following reasons.

• Although SAM judges the consistency of LTM based
on class labels, there are no labels in the case of online
prediction. In addition, because observed values may be
anomalous and/or noisy in real-world online prediction,
we cannot always trust the values, unlike class labels.

• SAM needs various learning models for multiple sam-
ple sets from different window sizes and from the
combination of STM and LTM. For this reason, if
we apply it to local regression based on thek-nearest
neighbor method directly, it needs to learn regression
models many times, which increases the computational



cost.

Domain adaptation and transfer learning have also re-
cently become attractive research topics. The objective is to
learn a target domain model with few samples by utilizing
the knowledge of a source domain for which there are many
samples. The idea of a prior model is to use the source
model as a prior for the model parameters of a target model
that is trained on the target data. In the case of Regularized
Least Squares (RLS), a regularization term on the model
parametersw of the form ||w||2 is simply replaced with
the biased regularization term||w −w′||2, wherew′ is the
model parameters learned in the source model. The idea has
been successful both practically and theoretically [20], [21],
[22], [23]. In addition, the computational cost is low. In [24],
transfer learning was extended to a temporal representation
and used for learning under concept drift. However, its aim
was classification. In addition, the idea is not regularization-
based, and adds the features of the source domain into those
of the target domain. As a result, because the dimension
of the feature space increases, learning algorithms such as
thek-nearest neighbor algorithm suffer from problems with
dimensionality.

III. PROBLEM SETTING

This section describes the problem setting from the three
perspectives of online prediction, concept drift, and memory
management.

A. Online prediction on data streams

A data stream is a sequence(x1,x2, · · · ) of tu-
ples where each tuplexi is a J-dimensional vector
(xi,1,xi,2, · · · ,xi,J). At the current time stept, we seek to
forecast valuêxt+N,j of the jth variable forN steps ahead.
The number of prediction stepsN , tuple dimensionJ , and
predicted variablej are given as constant small numbers
before prediction. We focus on (but are not limited to) uni-
variate data streams (i.e.,J = 1) and denotex′

i = xi,1 and
x̂′
i = x̂i,1. In addition, we assume short-range forecasting

(typically N = 1, 2, · · · , 5). We denoteyi+N = xi+N,j and
ŷi+N = x̂i+N,j .

After ŷt is predicted at time stept−N , the observed value
yt is given at time stept. A predictor can then measure the
prediction error, which is the error between the predicted
and observed values, given by

loss(ŷt, yt) = (ŷt − yt)
2. (1)

B. Concept drift

Concept drift [2] occurs when the joint distribution
changes for at least two time stepsti and tj :

P (xti−D′+1,xti−D′+2, · · · ,xti , yti+N ) ̸=
P (xtj−D′+1,xtj−D′+2, · · · ,xtj , ytj+N ) (2)

whereD′ is a certain number. The joint distribution can also
be written as

P (xt−D′+1, · · · ,xt, yt+N ) =

P (xt−D′+1, · · · ,xt)P (yt+N | xt−D′+1, · · · ,xt) (3)

where P (xt−D′+1, · · · ,xt) is the distribution of the fea-
tures and P (yt+N | xt−D′+1, · · · ,xt) is the pos-
terior probability of the prediction. WhenP (yt+N |
xt−D′+1, · · · ,xt) changes over time, it is called real
drift. WhenP (xt−D′+1, · · · ,xt) changes without affecting
P (yt+N | xt−D′+1, · · · ,xt), it is called virtual drift. An-
other point of view is that when the distribution changes
quickly and severely, it is called sudden drift. In contrast,
when the distribution evolves slowly, it is called incremental
drift. In addition, when changes in the distribution occur
repeatedly, it is called recurring drift.

C. Memory management

A time-series segmentst of length D at time stept is
represented as aDJ-dimensional vector(xt−D+1, · · · ,xt).
The memory of the proposed method stores eachDJ + 1-
dimensional vectorzi = (si, yi+N ) as a sample. Memory
capacity and lengthD are given before prediction (D = 5
as default). We discuss the memory capacity by using the
maximum number of samples that can be stored in the entire
memory, and denote the number asLmax.

IV. PROPOSEDMETHOD

In this section, we give an overview of the proposed
method, OPOSSAM, and then describe each of its compo-
nents.

A. Overview

Figure 1 shows an overview of OPOSSAM. Inspired by
the idea of SAM, OPOSSAM manages STM and LTM
separately in order to tackle the following issues: (a) STM
cannot handle recurring old information well but does deal
with sudden drift; and (b) LTM cannot handle sudden drift
well but does deal with recurring drift. STM manages only
recent samples using a sliding window. LTM manages older
samples transferred from STM by choosing redundant sam-
ples in dense regions and removing anomalous and/or noisy
samples with the largest prediction errors to keep the number
of samples belowLmax. The memory management of STM
and LTM is described in Section IV-C and Section IV-D,
respectively.

First, given the current time-series segment from the data
stream and the samples of(si, yi+N ) from the entire memory
consisting of STM and LTM, OPOSSAM executes the
following local regression of similar time-series segments:

(1) Find K time-series segmentssi1 , si2 , · · · , siK similar
to st1 at the current timet1 from the entire memory
consisting of STM and LTM;
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Figure 1. Overview of OPOSSAM

Figure 2. Illustration of local regression of time-series segments based on
the entire memory in the case ofD = 3 andJ = 1 at current time stept.

(2) Derive the regression equation that estimates
yi1+N , yi2+N , · · · , yiK+N from si1 , si2 , · · · , siK ;
and

(3) Predict forecasting valuêyt1+N for N steps ahead by
substituting the current time-series segmentst1 into the
regression equation.

Figure 2 illustrates a case where the length of each univariate
time-series segment is 3 (i.e.,D = 3) and the number of
similar time-series segments is 4 (i.e.,K = 4). By using the
above local regression based on lazy learning, OPOSSAM
is expected to deal not only with non-linear data streams
but also with concept drift quickly and flexibly [25]. The
formulation is given in Section IV-B.

Next, in order to adjust the influence of recent informa-
tion, OPOSSAM adapts the above regression model learned
from the entire memory to small samples of STM. Figure 3
illustrates a case where the length of each univariate time-
series segment is 3 (i.e.,D = 3). This is implemented in
OPOSSAM by using regularization-based adaptation, which
is known as a successful method in the field of domain

Figure 3. Illustration of adjustment of regression model so as to fit the
recent tendency in the case ofD = 3 andJ = 1 at current time stept.

adaptation and transfer learning, as follows:

(1) Define a prior model by regression model parameters
w̃ that were learned from samples in the entire memory
consisting of LTM and STM; and

(2) Learn the regression model parametersw with biased
regularization termλ||w− w̃||2 from samples of STM
whereλ is the regularization parameter.

The regularization parameterλ represents the importance of
STM and LTM. OPOSSAM generates candidates for model
parametersw by dynamically varying the values ofλ. We
show that parts with high computational complexity can
be precomputed independently ofλ, as described later in
Section IV-E. This precomputation allows OPOSSAM to
efficiently learn regression model parametersw adapted for
various values ofλ. We describe the details in Section IV-E.

Finally, OPOSSAM mixes the predicted values of the
regularized adaptation model with various regularization
parameter values, and selects the final predicted value using
the mixed predicted value and the predicted value based
on the entire memory. OPOSSAM can handle concept drift
without tuning meta-parameters because it automatically
adjusts the integration based on recent prediction errors. We
describe the details in Section IV-F.

B. Local regression of similar time-series segments

Given samples of(si, yi+N ) and time-series segmentst1
at current time stept1, we formulate the forecasting method.
The idea is the same as in the existing method [9] excluding
domain-specific parts. We call this method Local Regression
of Similar Time-series Segments (LRSTS).

By using the Euclidean distance betweenst1 and si
(i.e., ||st1 − si||2), we find the K nearest neighbors
si1 , si2 , · · · , siK for st1 from the samples. Instead of the
number of nearest neighborsK, we determine the ratio of
nearest neighborsr over the samples. Namely,K is equal to
I×r whereI is the number of samples. It is more robust in
the feature space ofsi to determiner instead ofK because
the region of nearest neighbors is less dependent on the
number of samples, as suggested in [26]. We setr = 0.1
as the default as in [26]. OPOSSAM can searchK-nearest
neighbors efficiently by indexing such as KD-tree [27].



We estimate the model parameterw=(w1,w2, · · · ,wD)T

of linear ridge regression in

min
w

||y −Xw||2 + λ′||w||2,

X =


si1
si2
...

siK

 , y =


yi1+N

yi2+N

...
yiK+N

 (4)

whereX and y are K × D and K × 1 matrices, respec-
tively. The optimum model parameterw of Eq. (4) can be
expressed from the first-order optimality condition in closed
form

w =
(
XTX+ λ′I

)−1
XTy (5)

whereI is theD ×D identity matrix. In this study, we set
the regularization parameter in Eq. (4) and Eq. (5) to 0 (i.e.,
λ′ = 0) in the same manner as the existing method [9] for
simplicity of discussion. Predicted valuêyt1+N is calculated
using

ŷt1+N = st1w. (6)

C. STM: Short-term memory

Because recent samples have fresh information and are
often more valuable than old samples for forecasting data
streams with concept drift, STM stores recent samples using
a sliding window. Long windows cannot handle sudden drift
whereas short windows are susceptible to noise. To tackle
this issue, SAM prepares learning models of various window
sizes. In contrast, OPOSSAM uses regularized adaptation,
which is described later in Section IV-E. For this reason,
OPOSSAM manages STM with only a small window for
storing recent samples.

When a tuplext1 is observed at current timet1, zt0 =
(st0 ,xt0+N,j) is added to the STM as the newest sample
where t0 = t1 − N . The sliding window stores recent
samples {∪t0

t=1 zt (t0 ≤ Lmin)∪t0
t=t0−Lmin+1 zt (Lmin < t0)

(7)

whereLmin is the length of the window. When samplezt0 is
added to STM for the case ofLmin < t0, the oldest sample
zt0−Lmin

of STM is transferred to LTM.

D. LTM: Long-term memory

Given the maximum number of samples in both LTM and
STM asLmax, LTM needs to keep the number of samples
within Lmax − Lmin because STM hasLmin samples.
LTM considers non-redundancy and consistency instead of
freshness, and drops the following samples if the number of
samples exceedsLmax − Lmin:

(A) Samples from dense regions rather than isolated points
for eliminating redundant information; and

Figure 4. Illustration of how to keep samples in LTM

(B) Anomalous and/or noisy samples with large prediction
errors for maintaining consistency.

Figure 4 illustrates the case where each sample is projected
onto two dimensions. The procedure is as follows.

First, to find (A), OPOSSAM chooses several samples
(10 samples by default) as candidates from LTM uni-
formly at random without replacement, and selects the
sample(si, yi+N ) of the highest density region. In order
to select(si, yi+N ), OPOSSAM findsK nearest neighbors
si1 , si2 , · · · , siK for each candidatesi1, and selects the
sample that has the smallest distance fromsiK assi.

Next, to find (B), OPOSSAM applies LRSTS,
described in Section IV-B, to the sample(si, yi+N ),
and derives the model parameters by Eq. (5).
After this, it calculates the prediction errors
loss(ŷi1 , yi1), loss(ŷi2 , yi2), · · · , loss(ŷiK , yiK ) respectively,
and selects the sample with the largest prediction error to
drop from LTM as an inconsistent sample.

E. Regularization-based adaptation

LRSTS based on all samples in the entire memory can per-
form prediction with small variance, although it is difficult
to consider the freshness of information. In contrast, LRSTS
based on samples of STM can deal with recent changes
quickly although overfitting may occur because of the small
number of samples. To resolve this issue, OPOSSAM adapts
LRSTS learned from the entire memory to LRSTS based on
recent samples of STM.

Given model parameters̃w derived by Eq. (5) using
samples of the entire memory and time-series segmentst1
at current time stept1, OPOSSAM derives model parameter
w = (w1,w2, · · · ,wD)T, which is adapted to STM. We can
regard this approach as domain adaptation because the re-
gression model based on the entire memory can be regarded
as the source hypothesis (i.e., regularization parameterw̃ as
a prior model) and the regression model based on STM can
be regarded as the target hypothesis. Analogously, we can
view the formulation as a Bayesian linear regression with a
w̃-mean Gaussian prior distribution.

After we find theK nearest neighborssi1 , si2 , · · · , siK
for st1 from the samples of STM2, the formulation is based

1As described in Section IV-B,K is set toILTM × r whereILTM is
the number of samples in LTM andr is the ratio of nearest neighbors.

2As described in Section IV-B,K is set toISTM × r whereISTM is
the number of samples in STM andr is the ratio of nearest neighbors.



on biased-regularized least squares

min
w

||y −Xw||2 + λ||w − w̃||2,

X =


si1
si2
...

siK

 , y =


yi1+N

yi2+N

...
yiK+N

 (8)

whereλ is the regularization parameter. The optimum model
parameterw of Eq. (8) can be expressed from the first-order
optimality condition in closed form

w =
(
XTX+ λI

)−1
XT

(
y −XTw̃

)
+ w̃. (9)

If the value of the regularization parameterλ is close
to zero, then LTM tends to be ignored and the regression
model is close to the LRSTS learned from samples of
STM. In contrast, if the value ofλ is large, then STM
tends to be ignored and the regression model is close to
the LRSTS learned from samples from the entire memory.
To adjust the relative importance between STM and LTM,
OPOSSAM learns the regression models by using various
values ofλ. However, Eq. (9) includes an inverse matrix,
and the calculation cost is high if we calculate it according
to λ values from scratch. To reduce the calculation cost,
we were inspired by [28], and consider the singular value
decomposition ofX = UDVT where U is a K × K
orthogonal matrix,D is aK×D diagonal matrix, andV is
a D ×D orthogonal matrix. We then re-express the model
parameterw as

w = V
(
D2 + λI

)−1
DUT

(
y −XTw̃

)
+ w̃. (10)

Furthermore, we decompose Eq. (10) for each row as

wj =
dj

d2j + λ
V′

jU
T
(
y −XTw̃

)
+ w̃j ,

V′
j =

[
Vj︸︷︷︸
D

, 0, 0, · · · , 0︸ ︷︷ ︸
K−D

]
(11)

wheredj is the singular value (i.e., thejth diagonal element
of D in descending order) andV′

j is 1×K matrix where the
jth row ofV with K−D zero padding. Because OPOSSAM
precomputesdj andV′

jU
T
(
y −XTw̃

)
+ w̃, it can avoid

recomputing the inverse matrix for various values ofλ many
times.

F. Integration of predicted values

As described in Section IV-E, since the regularized adap-
tation model outputs multiple predicted values based on
various values of the regularization parameter, OPOSSAM
needs to mix them appropriately based on recent trends.
In addition, OPOSSAM needs to select the final predicted
value from the value predicted by the regularized adaptation
model and the value predicted by LRSTS based on the entire
memory. In the following, we denote the set of regularization

parameter values (i.e., variation ofλ in Eq. (11)) asΛt at
time stept.

First, OPOSSAM mixes the predicted results based on
various regularization parameter values by weighting them
according to the current prediction error. Forλ ∈ Λt1 at
current time stept1, we denote the predicted value of the
regularized adaptation model aŝy(λ)t1 . The weight aλ is
defined as

aλ = 1− l̃oss(ŷ
(λ)
t1 , yt1), λ ∈ Λt1 , (12)

where l̃oss(·(λ), ·) rescales the range of{loss(·(λ), ·)}λ∈Λt1

to [0, 1] linearly. The mixed predicted valuêy
(Λt1 )

t1+N at time
t1 +N is then adjusted to

ŷ
(Λt1 )

t1+N =
∑

λ∈Λt1

aλŷ
(λ)
t1+N

/ ∑
λ∈Λt1

aλ (13)

The variation ofλ is determined iteratively by the following
procedure:

(1) calculate centerm asm :=
∑

λ∈Λt
(aλ log10 λ) from

current variationΛt; and
(2) generate the next variationΛt+1 as

10m−C , 10m−C+1, · · · , 10m+C

whereC is a constant number (C = 10 as default).

The initial variationΛ1 is generated inm = 0 as

10−C , 10−C+1, · · · , 10C .

Finally, OPOSSAM selects the final predicted value be-
tweenŷ

(Λt1 )

t1+N , which is the mixed predicted value in Eq. (13),

and ŷ
(all)
t1+N , which is the predicted value of LRSTS based

on the entire memory, according to the predicted errors
averaged over the recentLmin samples:

ŷt1+N =
ŷ
(Λt1 )

t1+N

(
0 ≤

t1∑
t=t1−Lmin+1

loss(ŷ
(all)
t , yt)− loss(ŷ

(Λt)
t , yt)

)
ŷ
(all)
t1+N (otherwise) .

(14)

V. EXPERIMENTS

In this section, we first show the baseline methods and
then confirm how the proposed mechanism affects the
prediction using simple synthetic toy data. After that, we
compare the accuracy of the proposed method with that
of the baseline methods on three real-world datasets in
the domains of traffic flow, stock prices, and electricity
consumption.



A. Baseline methods

We select the following baseline methods, which are
appropriate for forecasting short-range future values on
univariate data streams, and we compare these methods with
the proposed methodOPOSSAM. For memory capacity
conditions, we set the minimum and maximum numbers of
samples to store in memory at 300 and 1000, respectively
(i.e., Lmin = 300 and Lmax = 1000). Unless otherwise
stated, the parameter settings of the baseline methods are
the same as those of OPOSSAM.

ARWin is an existing method [8] based on linear re-
gression with adaptive window sizes. Following the au-
thors’ suggestions, we set the variation of window sizes
to 3, 4, · · · , 50. This is an existing linear online prediction
method that can handle concept drift.

KRWin is an existing method [7] based on kernel ridge
regression with a sliding window of fixed size. We optimize
the meta-parameters using 1000–2000 steps for each dataset.
We search the window sizes in{300, 1000} according to
Lmin andLmax

3, and use radial basis function kernel

kernel(x,x′) = exp(−γ||x− x′||2). (15)

We search for the value ofγ such that the median of
{γ||xt − xt′ ||2}2000t,t′=1000 is in {10i}i=−2,−1,··· ,2 based on
the idea of [29], and search the regularization parameter
in {10i}i=−2,−1,··· ,2. This is an existing non-linear online
prediction method with a sliding window.

NRWin is an existing method excluding the domain-
specific parts in [9], and is the same as LRSTS with a fixed
size sliding window. We prepare two windows which sizes
are 300 and 1000 according toLmin andLmax, and denote
them as NRWin300 and NRWin1000 respectively. This is an
existing online prediction method based on LRSTS.

NAWin is an existing method excluding the domain-
specific parts in [12], [13], and uses the mean among values
for N steps ahead among similar time-series segments as a
predicted value. Other settings are the same as for NRWin.
This is an online prediction method based on similar time-
series segments.

B. Insight into mechanism of OPOSSAM on synthetic data

In this section, we confirm the effectiveness of the pro-
posed mechanism by visualizing the prediction results using
three simple synthetic data streams. Each data stream is
univariate (i.e.,J = 1). In each data stream, we add a small
amount of noise based on a normal distribution with mean
zero and standard deviation 0.01, and evaluate the forecast
for 3 steps ahead (i.e.,N = 3).

Figure 5. Effect of introducing LTM (top: synthetic data; bottom: closeup
of the most different part)

Evaluation 1: Effect of introducing LTM

We confirm the effectiveness of introducing LTM in
addition to STM. We use the synthetic data in Fig. 5 (top)
which contains sudden concept drift at steps 1000 and 2000,
and also includes recurring concept drift between steps 0–
1000 and 2000–3000. We compare the prediction results of
OPOSSAM with NRWin1000 and NRWin300 because they
use LRSTS, which OPOSSAM also uses, and NRWin1000
has competitive accuracy as described later in Section V-C.

Figure 5 (bottom) focuses on the most different part
(range surrounded by red vertical lines in the top of Fig. 5)
and shows the prediction results. We find that, from when
the second sudden concept drift occurs to several steps
later, all of the methods have difficulty in forecasting.
However, the deviation is smaller for OPOSSAM than for
the comparison methods. The gray region in Fig. 5 (bottom)
shows that OPOSSAM selected̂y(all)t1+N instead ofŷ

(Λt1 )

t1+N in
Eq. (14). This indicates that OPOSSAM does not make STM
dominant in the gray region. In other words, OPOSSAM
preferentially uses LTM for several steps after the second
sudden concept drift occurs.

The above observation shows that OPOSSAM can utilize
the old information that appeared during steps 0–1000 when
recurring concept drift occurs from step 2000. In contrast,
the other methods discarded the old information because
they do not have LTM. Therefore, we find that OPOSSAM
utilizes LTM effectively in the example.

Evaluation 2: Effect of regularization-based adjustment

We confirm the effectiveness of dynamically changing
the weights of the regularization parameter values in the

3Because KRWin needs to store the gram matrix and the inverse matrix,
the actual memory capacity that is required is on the order of the square
of the number of samples [7]. However, we search the window sizes by
matching the numbers of samples.



Figure 6. Effect of regularization-based adjustment (top: synthetic data;
middle: weights of regularization parameters; bottom: closeup of one of the
most different parts)

regularized adaptation model. We use the synthetic data in
Fig. 6 (top), which consists of multiple connected straight
lines with recurring concept drift. As in the previous ex-
periment, we compare the prediction results of OPOSSAM
with NRWin1000 and NRWin300. Unlike the previous ex-
periment, OPOSSAM always selectedŷ

(Λt1 )

t1+N in Eq. (14) in
this experiment.

Figure 6 (middle) shows changes in the weights of the
regularization parameters. The vertical axis is the logarithm
of the regularization parameter (i.e.,log10 λ). Although each
gray plot represents a regularization parameterλ of the
highest weightaλ in Eq. (12), the changes fluctuate and it
is difficult to find a trend despite the simplicity of the data.
For this reason, we apply a median filter of window size
100 and show the results as blue plots. This shows that the
regularization parameters tend to be adjusted to high values
several steps after the straight line bends. This is because it
is difficult to forecast this kind of step from only the recent
data of STM and OPOSSAM increases the importance of
LTM to utilize old similar information.

For several steps after a straight line bends, forecasting is
difficult and the prediction results differ most significantly
among the methods. Figure 6 (bottom) focuses on one of
the parts (range surrounded by red vertical lines in the top
and middle of Fig. 6) and shows the prediction results. We
find that deviation is smaller for OPOSSAM than for the
comparison methods. This is because OPOSSAM adjusts

Figure 7. Effect of maintaining consistency in LTM (top: synthetic data;
middle: closeup of the most different part; bottom: projected samples in
memory)

the regularization parameter to make LTM dominant during
steps where it is difficult to forecast using only STM.

The above observation shows that OPOSSAM can adjust
the weights of the regularization parameter values in the
regularized adaptation model effectively in this example,
although the weights fluctuate without using a median filter.

Evaluation 3: Effect of maintaining consistency in LTM

We checked the effectiveness of the mechanism for main-
taining consistency in LTM by using the synthetic data in
Fig. 7 (top). These data are a sine curve that decreases
linearly in amplitude from 10 to 1, and includes incremental
and recurring concept drift. In addition, we add three anoma-
lies whereyt = 20 at each stept = 500, 1000, 1500. We
modify OPOSSAM so that the samples are compressed as
centroids by k-means++ clustering in the same way as SAM
[3], [4] instead of the mechanism described in Section IV-D.
We denote the modified version asOPOSSAMkm, and
compare it with OPOSSAM.

Figure 7 (middle) focuses on the last 1000 steps (range
surrounded by red vertical lines in the top of Fig. 7), where
no anomalies are present, and shows the prediction results.
We find that it is difficult for OPOSSAMkm to forecast
around the steps whereyt (the value on the vertical axis
in the middle of Fig. 7) is close to zero. This is because
OPOSSAMkm cannot remove the anomalies from LTM
and applies LRSTS to samples including the anomalies. In
contrast, OPOSSAM can make a correct forecast because



it removes anomalous samples by the mechanism for main-
taining consistency in LTM.

Here we confirm in detail the information discussed
above. Figure 7 (bottom) shows the samples from the
STM4, LTM in OPOSSAM, and LTM in OPOSSAMkm,
respectively at the last step. For each samplezi =
(x′

i−4,x
′
i−3, · · · ,x′

i, yi+3), the value of the horizontal axis
is the value ofx′

i−1, the value of vertical axis is the value
of x′

i, and the color corresponds to the value ofyi+3,
respectively. Although there are no anomalous samples in
LTM of OPOSSAM, there are anomalous samples around
(x′

i−1,x
′
i) = (0, 0) (dark blue points in the bottom of Fig. 7)

in LTM of OPOSSAMkm.
The above observation shows that OPOSSAM can main-

tain consistency by keeping not only old but also important
samples in LTM. In contrast, the existing mechanism [3],
[4] based on k-means++ clustering cannot maintain consis-
tency although it can keep old samples. Through the above
evaluations 1–3, we find that the mechanism of OPOSSAM
is effective for forecasting in those examples.

C. Comparison results of accuracy on real-world datasets

1) Real-world datasets:We use the following real-world
data in each domain as univariate data streams, and remove
missing values beforehand.
Traffic is the average traffic speed on a freeway operated
by the California Department of Transportation5. It is widely
used in traffic flow prediction [6], [9]. We use data observed
at the traffic detector VDS:407750 from 1 October 2017 to
2 December 2017. Each step interval is 5 min. We use only
the Lane 1 Speed (mph) column. The total number of steps
is 18,143, and there are no missing values.
Stock is the closing price of 225 Japanese representative
companies listed on the Tokyo Stock Exchange6. It was used
to evaluate ARWin in [8]. In the same way as [8], we use
the Close column only. The period is from 19 May 1997 to
15 May 2017. Each step interval is 1 day. The total number
of steps is 5046 including 143 missing values.
Electricity is the electric consumption for a single residen-
tial customer in France7 [30]. The consumption measure-
ments were gathered between December 2006 and Novem-
ber 2010 with 1 min resolution. We use only the Voltage
column. Each step interval is 1 min. The total number of
steps is 2,075,259 including 25,979 missing values.

2) Experimental setup:We measure accuracy using the
three metrics of Root Mean Squared Error (RMSE), Mean
Absolute Error (RAE), and Median Absolute Error (MdAE).
The metrics are measured in an interleaved test-then-train
or prequential manner, which is standard for evaluation of

4The samples in STM are the same for OPOSSAM and OPOSSAMkm.
5http://pems.dot.ca.gov/
6https://finance.yahoo.com/quote/%5EN225/
7https://archive.ics.uci.edu/ml/datasets/individual+household+electric+

power+consumption

data streams with concept drift. To our knowledge, this is
the first time LTM has been used for online prediction of
data streams with concept drift, and we focus on evaluation
after LTM has stored enough samples. For this reason, we
skip the first 1000 steps and evaluate the remaining steps
in each dataset. We evaluate the forecasting results for 1,
3, and 5 steps ahead (i.e.,N = 1, 3, 5) as prediction steps.
Because OPOSSAM involves a random sampling process,
the results may vary between different runs, and we repeat
the experiments 10 times on each dataset and state the mean
of the results.

3) Experimental results:As shown in Table I, OPOS-
SAM achieves the best performance in most cases. OPOS-
SAM has the best average ranks of 1.66, 1.18, and 1.00
crossing both datasets and prediction steps for RMSE,
MAE, and MdAE, respectively. The second-best method
for OPOSSAM is NRWin1000, and the average ranks are
1.71, 1.82, and 2.22 crossing both datasets and prediction
steps for RMSE, MAE, and MdAE, respectively. We ran the
well-known Wilcoxon signed rank test against all baselines
and found that all results are statistically significant at
p = 0.0000. For this reason, we find the following for the
datasets:

• LRSTS, which OPOSSAM also uses as a base predic-
tor, is effective for forecasting short-range values if we
can find appropriate window sizes; and

• OPOSSAM, which is an extended method from LRSTS
to deal with concept drift, achieves superior accuracy
over baseline methods.

VI. CONCLUSION

In order to accurately forecast short-range future values
on various data streams under heterogeneous concept drift,
we introduced adaptive memory management, consisting
of STM and LTM, to online prediction, and proposed
OPOSSAM. The predictor is based on local regression of
similar time-series segments, and the memory management
is inspired by SAM, which is a classification method for
self-adjusted memories in both STM and LTM. OPOSSAM
manages LTM by reducing redundant samples with large
prediction errors to maintain consistency within the max-
imum memory capacity. In addition, OPOSSAM adjusts
the prediction model for recent trends by regularization-
based adaptation from a prior model learned using the
entire memory. This regularization-based adaptation can be
efficiently precomputed when adjusting various values of
the regularization parameter. In the experiments, we showed
superiority in accuracy. We demonstrated that the proposed
mechanism is effective for simple synthetic datasets, and
confirmed that OPOSSAM is statistically superior to several
baseline methods in terms of accuracy on three real-world
datasets: traffic flow, stock prices, and electricity consump-
tion.



Table I
PREDICTION PERFORMANCECOMPARISON ONREAL-WORLD DATASETS

Dataset Method
1 step ahead forecast 3 steps ahead forecast 5 steps ahead forecast

RMSE MAE MdAE RMSE MAE MdAE RMSE MAE MdAE

Traffic

OPOSSAM 1.2992 (1) 0.5788 (1) 0.2655 (1) 2.2149 (1) 0.9259 (1) 0.3755 (1) 2.7185 (1) 1.1116 (1) 0.4136 (1)
ARWin 1.4538 (3) 0.6679 (3) 0.3017 (3) 2.6787 (3) 1.2137 (3) 0.5171 (6) 3.7245 (3) 1.6646 (5) 0.6790 (6)

NRWin1000 1.4356 (2) 0.6150 (2) 0.2778 (2) 2.6621 (2) 1.0497 (2) 0.3902 (2) 3.7070 (2) 1.3525 (2) 0.4338 (4)
NRWin300 2.0819 (5) 0.7439 (4) 0.3078 (4) 3.9015 (6) 1.2971 (4) 0.4328 (5) 5.0048 (7) 1.6487 (4) 0.4868 (5)
NAWin1000 3.9302 (7) 1.4246 (7) 0.3280 (6) 4.2880 (7) 1.6206 (7) 0.4050 (4) 4.5954 (6) 1.7586 (6) 0.4320 (3)
NAWin300 3.0232 (6) 1.0870 (6) 0.3133 (5) 3.7075 (5) 1.3632 (5) 0.3933 (3) 4.2516 (5) 1.5515 (3) 0.4233 (2)

KWRin 1.7166 (4) 0.9047 (5) 0.4305 (7) 2.9313 (4) 1.5709 (6) 0.6705 (7) 4.0727 (4) 2.1735 (7) 0.8418 (7)

Stock

OPOSSAM 200.35 (1) 142.90 (1) 106.14 (1) 347.73 (1) 252.50 (1) 190.39 (1) 444.58 (1) 331.09 (1) 259.53 (1)
ARWin 217.63 (3) 156.52 (3) 116.87 (4) 398.31 (3) 291.65 (3) 217.14 (3) 548.54 (3) 405.62 (4) 310.29 (4)

NRWin1000 204.90 (2) 144.48 (2) 107.11 (2) 352.06 (2) 257.52 (2) 199.34 (2) 463.63 (2) 343.89 (2) 268.67 (2)
NRWin300 223.41 (4) 157.41 (4) 115.42 (3) 405.81 (4) 293.31 (4) 218.03 (4) 551.53 (4) 398.17 (3) 300.07 (3)
NAWin1000 689.12 (6) 452.54 (6) 260.75 (6) 754.99 (7) 524.43 (6) 340.12 (6) 817.32 (7) 585.07 (6) 398.55 (6)
NAWin300 413.11 (5) 279.33 (5) 190.55 (5) 515.89 (5) 370.75 (5) 276.14 (5) 601.68 (5) 442.53 (5) 338.49 (5)

KWRin 704.42 (7) 547.84 (7) 447.71 (7) 749.19 (6) 582.47 (7) 476.09 (7) 792.83 (6) 616.26 (7) 504.68 (7)

Electricity

OPOSSAM 0.6045 (2) 0.4348 (1) 0.3176 (1) 1.2676 (6) 0.7440 (2) 0.5613 (1) 14.269 (7) 0.9110 (2) 0.6897 (1)
ARWin 0.6936 (4) 0.5032 (4) 0.3705 (4) 1.0839 (2) 0.8035 (3) 0.6086 (3) 1.3454 (4) 1.0081 (5) 0.7750 (4)

NRWin1000 0.6040 (1) 0.4363 (2) 0.3203 (2) 1.0032 (1) 0.7429 (1) 0.5635 (2) 1.2105 (1) 0.9027 (1) 0.6959 (2)
NRWin300 0.6627 (3) 0.4784 (3) 0.3521 (3) 1.1537 (4) 0.8392 (5) 0.6294 (5) 1.4368 (5) 1.0398 (6) 0.7824 (6)
NAWin1000 0.8730 (5) 0.6170 (5) 0.4411 (5) 1.1259 (3) 0.8300 (4) 0.6252 (4) 1.2807 (2) 0.9571 (3) 0.7341 (3)
NAWin300 0.8812 (6) 0.6300 (6) 0.4537 (6) 1.1632 (5) 0.8638 (6) 0.6560 (6) 1.3382 (3) 1.0053 (4) 0.7757 (5)

KWRin 1.4684 (7) 1.1272 (7) 0.8962 (7) 1.5578 (7) 1.1955 (7) 0.9503 (7) 1.6374 (6) 1.2568 (7) 0.9986 (7)
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Model Trees from Evolving Data Streams,”Data Min. Knowl.
Discov., vol. 23, no. 1, pp. 128–168, Jul. 2011.

[16] E. Ikonomovska and J. Gama, “Learning Model Trees from
Data Streams,” inProceedings of the 11th International
Conference on Discovery Science, ser. DS ’08. Springer-
Verlag, 2008, pp. 52–63.



[17] E. Ikonomovska, J. Gama, and S. Dzeroski, “Online tree-
based ensembles and option trees for regression on evolving
data streams,”Neurocomputing, vol. 150, pp. 458–470, 2015.

[18] Y. Matsubara and Y. Sakurai, “Regime Shifts in Streams:
Real-time Forecasting of Co-evolving Time Sequences,” in
Proceedings of the 22Nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, ser. KDD
’16. ACM, 2016, pp. 1045–1054.

[19] A. Bifet and R. Gavalda, “Learning from Time-Changing
Data with Adaptive Windowing.” inSDM, vol. 7. SIAM,
2007, pp. 443–448.
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