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Abstract—Data streams such as traffic flows, stock prices, different window sizes in STM, compresses older stream
and electricity consumption are endless time-series data from data into LTM, and adaptively uses multiple sample sets ob-
time-varying environments, and concept drift in non-stationary tained by combining them. This provides high classification
data streams is an important problem. To forecast the short- . .
range future values of such data streams accurately in real ac.curacy for synthetic datasets W'th_ heteroggneous concept
time, we propose an online prediction method called Online drift and for real-world datasets, without tuning of meta-
Prediction Of Stream data with Self-Adaptive Memory (OPOS-  parameters among datasets.

SAM). OPOSSAM introduces adaptive memory management For data streams such as traffic flows, stock prices,
consisting of short-term memory and long-term memory 0 544 glectricity consumption, online prediction methods are

manage time-series segments, and forecasts future values by needed to forecast short-range future values accurately in
local regression based on similar time-series segments. In ge luture valu u y!

order to deal with concept drift, OPOSSAM automatically ~ real time. As an example of traffic flow prediction, ap-

adjusts the prediction model learned from short-term memory  plications such as real-time car navigation systems and
by considering the_prediction model _If_sarned from the entire  gdvanced traffic management systems need to accurately
memory as the prior model. In addition, OPOSSAM keeps  gqracast traffic flows several time steps in advance by using

long-term memory consistent by reducing redundant samples . . o
with large prediction errors. Experimental results showed a  Uaffic flow data delivered at 5-min intervals [5], [6]. One

reduction in prediction errors compared with baseline methods approac_:h to such predicf[ion of .future values _iS baseq on
on real-world datasets in the different domains of traffic flow,  regression from recent time-series stored using a sliding

stock prices, and electricity consumption. window. To improve accuracy, existing methods that use
KeywordsData stream; Online prediction; Short-range fore- ~ hon-linear regression [7] and adaptive window sizes [8] have
casting; Concept drift; Biased L2-regularization been proposed. Another approach is based on past history
and stores time-series segments in order to forecast future

|. INTRODUCTION values using segments similar to the current segment [9].

Data streams are endless non-stationary time-series datdis approach has been used to forecast traffic flows, stock
from time-varying environments, and real-time analysis ofprices, and electricity consumption by combining it with
such data is the foundation of Internet of Things technol-domain-specific approach.
ogy [1]. The analysis of such data streams requires (1) using However, it is difficult for existing methods such as [7],

a finite memory capacity to handle an infinite volume of[8], [9] to accurately forecast various data streams that
data and (2) dealing with concept drift for non-stationaryhave heterogeneous concept drift. Existing regression-based
data characteristics. methods using a sliding window do not utilize past informa-

Concept drift occurs in several patterns, such as suddetion. In contrast, existing history-based methods collect the
drift, incremental drift, and recurring drift [2], and ma- history in a fixed period before prediction, which makes it
chine learning techniques that can deal with concept driftifficult to take concept drift into account. Although SAM
have attracted growing interest. A sliding window, which considers concept drift and manages past information, it is
stores the most recent part of the data stream in shorkimed at classification rather than online prediction, and it is
term memory, has been widely adopted to handle suddenot appropriate to apply SAM to online prediction from the
and incremental concept drift. However, it is difficult to perspectives of maintaining LTM consistency and requiring
determine the window size for non-stationary data streammultiple learning models based on various sample sets.
because of the following issues: (a) it is difficult to handle In this paper, we propose the Online Prediction method
sudden changes when the window size is too large, and (pf Stream data with Self-Adaptive Memory (OPOSSAM)
stationary data streams are vulnerable to noise when the order to accurately forecast short-range future values
window size is too small. In addition, if similar concepts from various data streams under heterogeneous concept drift.
reoccur after a long period of time, the sliding window Inspired by SAM [3], [4], we introduce adaptive memory
cannot utilize former concepts. To overcome these problemsnanagement, consisting of STM and LTM. to online predic-
Self-Adjusting Memory (SAM) has been proposed as ation. The memory manages time-series segments from the
classification method with both Long-Term Memory (LTM) data stream, and the local regression of similar time-series
and Short-Term Memory (STM) [3], [4]. SAM uses multiple segments is applied based on [9]. OPOSSAM keeps LTM



consistent by reducing redundant samples with large predicsuch as large traffic flows during rush hour can be well
tion errors. Furthermore, the regularization-based adaptatioutilized, this is not generalizable [5], [9]. Another approach
of OPOSSAM adjusts the prediction model learned fromstores past time-series segments and forecasts future val-
STM by considering the prediction model learned fromues based on previous segments that are similar to the
the entire memory as the prior model. The approach noturrent segment. This approach is widely used in several
only avoids overtraining from STM, which may not store domains, such as traffic flows, stock prices, and electricity
enough samples, but also adjusts the importance betweeonsumption, and achieves high accuracy in each domain
STM and LTM based on concept drift. In addition, becaus€9], [12], [13]. However, the existing methods based on this
OPOSSAM precomputes the prediction model, adjustmentapproach store segments in fixed intervals before the start
can be calculated efficiently without the need to learn manyf forecasting, and always use them during prediction. As a

models from scratch. result, the old information is always used even when concept
The main contributions are summarized as follows: drift occurs. The obvious solution is to manage time-series
« We propose OPOSSAM, which segments from the data stream by using a sliding window

_ introduces adaptive memory management consistof fixed size. However, old information is discarded once it

ing of STM and LTM to online prediction; haé r?oved odqttqf the st:idiggdwinFOW. ith t drift h
— keeps LTM consistent and redundant in a way niine prediction methods dealing with concept drift have

appropriate to online prediction based on Iocalbeen prqposed. In [14], [15], [16], [17], regression based
regression; and on decision tree models was prop_o_sed for data st_rgams.
_ uses regularization-based adaptation to adjust th&OWever these methods do not utilize LTM. In addition,
importance between STM and LTM in order to they assume the case of forecasting valqes one step a_head
precompute the prediction model. based on multivariate Qata sFreams, which is appropriate
i . when the number of variables is large. In contrast, we focus
« We confirm superiority in terms of accuracy by on data streams where the number of variables is small
— demonstrating that the mechanism of OPOSSAMtypically univariate streams) and forecastingstep ahead
is effective by using simple synthetic datasets; andyhere N is a small number. The method in [18] combines
— reducing prediction errors compared with baselineprediction with a multiple time-scale structure, and selects
methods on real-world datasets in the differenta predictor that fits the current environment for each time-
domains of traffic flow, stock prices, and electricity scale. However, this is aimed at long-range forecasts, not
consumption. short-range forecasts. In addition, predictors are generated in
This paper is an extended version of our previousreal time, and the number of predictors may increase without
work [10], and is organized as follows. Section Il providesbound. In contrast, an online prediction method that adjusts
an overview of related work. In Section Ill, we introduce the sliding window size without explicitly detecting concept
the problem setting. In Section 1V, we propose OPOSSAMJrift has been proposed [8]. This delivers higher accuracy
Section V shows the experiments, and our conclusions ardhan methods based on [19]. However, since it uses only
provided in Section VI. STM and discards older information, it cannot utilize LTM.
In addition, the predictor is linear, and the accuracy has not
been compared with that of non-linear methods.
Regression-based predictors using a sliding window of Recently, SAM [3], [4] has been proposed as a classifi-
fixed size are widely used in online prediction methods.cation method based on thienearest neighbor algorithm.
Although linear predictors such as AR are well known, theirSAM utilizes multiple different-sized window in STM like
accuracy tends to be low for non-linear real-world data.[8], compresses older information in LTM for recurring drift,
To improve accuracy, non-linear regression-based methodsd combines them dynamically. However, application in
such as support vector regression, kernel ridge regressiofgrecasting is difficult for the following reasons.
and neural networks have been proposed [6], [7], [11]. « Although SAM judges the consistency of LTM based
Learning of non-linear regression-based predictors is time-  on class labels, there are no labels in the case of online
consuming for real-time forecasting in some cases. To  prediction. In addition, because observed values may be
solve this problem, a predictor that learns the kernel ridge  anomalous and/or noisy in real-world online prediction,
regression in an incremental fashion by employing a sliding ~ we cannot always trust the values, unlike class labels.
window has been proposed [7]. However, these methods « SAM needs various learning models for multiple sam-
discard old information from the sliding window. In addition, ple sets from different window sizes and from the
it is difficult to satisfy both robustness against noise and combination of STM and LTM. For this reason, if
adaptation to sudden drift when using a fixed window size.  we apply it to local regression based on the&earest
History-based predictors have also been proposed in order neighbor method directly, it needs to learn regression
to improve accuracy. Although domain-specific knowledge models many times, which increases the computational
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cost. whereD’ is a certain number. The joint distribution can also

Domain adaptation and transfer learning have also rebe written as
cently become attractive research topics. The objective is to

X . . P Y R y s pr—y

learn a target domain model with few samples by utilizing (xi-pr1 Xt Yot )

the knowledge of a source domain for which there are many P&i-prits s Xe) PYern | Xe—prgns -5 %e) - (3)
samples. The idea of a prior model is to use the sourcgere P(X¢_pr41,-- ,%:) is the distribution of the fea-

model as a prior for the model parameters of a target modg|,;es and Plyren | Xe—pri1s-- %) is the pos-
that is trained on the target data. In the case of Regularizegjor probabilify of the predic7tion.’ WherP(y,.n |

Least Squares (RLS), a regulzar'izat?on term on the mOdekl(th/+17--~ ,x;) changes over time, it is called real
parametersw of the form ||w]|* is sm;ply replaced With  qrift \When P(x,_pr41,- - ,x;) changes without affecting
the biased regularization terfjw — w’||#, wherew’ is the P(yesn | Xe—prs1,--- %), it is called virtual drift. An-

model parameters learned in the source model. The idea hggher point of view is that when the distribution changes
been successful both practically and theoretically [20], [21]quickly and severely, it is called sudden drift. In contrast,
[22], [23]. In addition, the computational cost is low. In [24], \yhen the distribution evolves slowly, it is called incremental

transfer learning was extended to a temporal representatiilit; |n addition, when changes in the distribution occur
and used for learning under concept drift. However, its aimrepeatedly it is called recurring drift.

was classification. In addition, the idea is not regularization-
based, and adds the features of the source domain into tho&€ Memory management
of the target domain. As a result, because the dimension A time-series segment, of length D at time stept is

of the feature space increases, learning algorithms such ?épresented as B.J-dimensional vectotx,_p. 1, -- ,x;)
the k-nearest neighbor algorithm suffer from problems With-l-he memory of the proposed method Starez ébwh’JF 1-

dimensionality. dimensional vectow; = (s;,y:,~) as a sample. Memory

capacity and lengttD are given before prediction = 5

as default). We discuss the memory capacity by using the
This section describes the problem setting from the threenaximum number of samples that can be stored in the entire

perspectives of online prediction, concept drift, and memorymemory, and denote the number BSg,.«.

management.

IIl. PROBLEM SETTING

IV. PROPOSEDMETHOD

A. Online prediction on data streams In this section, we give an overview of the proposed
A data stream is a sequencex;,x,,---) of tu- method, OPOSSAM, and then describe each of its compo-
ples where each tuplex; is a J-dimensional vector nents.
(xi1,X42,° -+ ,X;,7). At the current time step, we seek to .
forecast valuek,, v.; of the jth variable forN' steps ahead. A= OVerview
The number of prediction steps, tuple dimension/, and Figure 1 shows an overview of OPOSSAM. Inspired by
predicted variablej are given as constant small numbersthe idea of SAM, OPOSSAM manages STM and LTM
before prediction. We focus on (but are not limited to) uni- separately in order to tackle the following issues: (a) STM
variate data streams (i.el,= 1) and denotex, = x;; and  cannot handle recurring old information well but does deal
x, = x;1. In addition, we assume short-range forecastingwith sudden drift; and (b) LTM cannot handle sudden drift
(typically N =1,2,---,5). We denotey; . y = x;4n,; and  well but does deal with recurring drift. STM manages only
Vit N = XifN,j- recent samples using a sliding window. LTM manages older
After g, is predicted at time stepp- IV, the observed value samples transferred from STM by choosing redundant sam-
¥ iS given at time step. A predictor can then measure the ples in dense regions and removing anomalous and/or noisy
prediction error, which is the error between the predictedsamples with the largest prediction errors to keep the number

and observed values, given by of samples below.,,,,. The memory management of STM
R R ) and LTM is described in Section IV-C and Section IV-D,
loss(§e, y) = (9 — ye)” (1) respectively.

B. Concept drift First, given the current time-series segment_ from the data
) stream and the samples(@f, y;+ v ) from the entire memory
Concept drift [2] occurs when the joint distribution consisting of STM and LTM, OPOSSAM executes the
changes for at least two time stefsandt;: following local regression of similar time-series segments:
(1) Find K time-series segments,,s;,, - ,S;, Similar
to s;, at the current timeg; from the entire memory
P(Xt,—Dr41,Xt;— D142, 5 Xt Yt +N) ) consisting of STM and LTM;

P(Xt,— D41, Xt;— D42, * 5 Xty Yt 4N ) 7
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' Figure 3. lllustration of adjustment of regression model so as to fit the
Adjustment of regression model recent tendency in the case bf= 3 andJ = 1 at current time step.

to fit the recent trend

A
currenttime:t  t+N

Precomputation of regularized adaptation model

! adaptation and transfer learning, as follows:
|_Generation of various model parameters | (1) Define a prior model by regression model parameters
T T T T w that were learned from samples in the entire memory
| Integration of predicted values | consisting of LTM and STM; and
! (2) Learn the regression model parametersvith biased

Final predicted value regularization term\||w — w||? from samples of STM

where \ is the regularization parameter.

Figure 1. Overview of OPOSSAM The regularization parametarrepresents the importance of

STM and LTM. OPOSSAM generates candidates for model

parametersy by dynamically varying the values of. We

show that parts with high computational complexity can

/) be precomputed independently af as described later in
*

Short-term
memory

Long-term memory

QA Q0 n

Section IV-E. This precomputation allows OPOSSAM to
efficiently learn regression model parametersdapted for
various values of. We describe the details in Section IV-E.
Finally, OPOSSAM mixes the predicted values of the

regularized adaptation model with various regularization
Figure 2. lllustration of local regression of time-series segments based oparam_Eter Value_s’ and selects the final pr?diCted value using
the entire memory in the case &f = 3 andJ = 1 at current time step. the mixed predicted value and the predicted value based

on the entire memory. OPOSSAM can handle concept drift

without tuning meta-parameters because it automatically
estimate2diusts the integration based on recent prediction errors. We
describe the details in Section IV-F.

currenttime: t  t+N

(2) Derive the regression equation that

Yir+NsYis+Ns 5 Yig+N from Si1Sigy "y Siks
and , o )

(3) Predict forecasting valug;, .y for N steps ahead by B. Local regression of similar time-series segments
substituting the current time-series segmgntinto the Given samples ofs;, y;+n) and time-series segmesyt,
regression equation. at current time step,, we formulate the forecasting method.

Figure 2 illustrates a case where the length of each univariat€he idea is the same as in the existing method [9] excluding
time-series segment is 3 (i.el) = 3) and the number of domain-specific parts. We call this method Local Regression
similar time-series segments is 4 (i.&,= 4). By using the  of Similar Time-series Segments (LRSTS).
above local regression based on lazy learning, OPOSSAM By using the Euclidean distance betwesn and s;
is expected to deal not only with non-linear data streamgi.e., ||s;, — s;||?), we find the K nearest neighbors
but also with concept drift quickly and flexibly [25]. The s;,,s;,, - ,si, for s;, from the samples. Instead of the
formulation is given in Section IV-B. number of nearest neighbofs, we determine the ratio of
Next, in order to adjust the influence of recent informa-nearest neighborsover the samples. Nameli is equal to
tion, OPOSSAM adapts the above regression model learnelx » where! is the number of samples. It is more robust in
from the entire memory to small samples of STM. Figure 3the feature space &f to determiner instead of K because
illustrates a case where the length of each univariate timethe region of nearest neighbors is less dependent on the
series segment is 3 (i.e) = 3). This is implemented in number of samples, as suggested in [26]. Werset 0.1
OPOSSAM by using regularization-based adaptation, whictas the default as in [26]. OPOSSAM can seaftinearest
is known as a successful method in the field of domaimeighbors efficiently by indexing such as KD-tree [27].



We estimate the model parame‘m&(wh Wo, - 7WD)T (A) Find redundant regions (B) Remove inconsistent samples
of linear ridge regression in

min| [y — Xwl|[? + ||wl P,

Siy Yir+N
Siy Yis+N
X = e Y= : (4) Figure 4. lllustration of how to keep samples in LTM
Sik Yig+N
where X andy are K’ x D and K x 1 matrices, respec- (g) Anomalous and/or noisy samples with large prediction
tively. The optimum model parameter of Eq. (4) can be errors for maintaining consistency.
expressed from the first-order optimality condition in closed

Figure 4 illustrates the case where each sample is projected
onto two dimensions. The procedure is as follows.
W = (XTX+/\’I)_1XTy (5) First, to find (A), OPOSSAM chooses several samples
) ) ) _ ) (10 samples by default) as candidates from LTM uni-
wherel is the D x D identity matrix. In this study, we set fomly at random without replacement, and selects the
the regularization parameter in Eg. (4) and Eq. (5) to O ('-e-sample(si,yHN) of the highest density region. In order
A" =0) in the same manner as the existing method [9] foryy select(s;, ;. n), OPOSSAM findsk nearest neighbors

form

simplicity of discussion. Predicted valge, , v is calculated 5. g, ... 5. for each cand_idatesil, and selects the
using sample that has the smallest distance frgm ass;.
e 4N = St W. (6) Ne>§t, to' find '(B), OPOSSAM applies LRSTS,
described in Section IV-B, to the samplés;,yiin),
C. STM: Short-term memory and derives the model parameters by Eq. (5).
Because recent samples have fresh information and asfter this, it calculates the prediction errors
often more valuable than old samples for forecasting datdoss(Ji,, Yi, ), 1088(Ji,, Yi, ), - -+ ,1088(Piy , iy ) rESPECtively,

streams with concept drift, STM stores recent samples usingnd selects the sample with the largest prediction error to
a sliding window. Long windows cannot handle sudden driftdrop from LTM as an inconsistent sample.

Whe'reas short windows are sgscepuble to noise. To.tacklg_ Regularization-based adaptation

this issue, SAM prepares learning models of various window based I les in th ,

sizes. In contrast, OPOSSAM uses regularized adaptation, LRSTS, ased on all samples In the entire memory can per-
which is described later in Section IV-E. For this reason form prediction with small variance, although it is difficult

OPOSSAM manages STM with only a small window for to consider the freshness of information. I.n contrast, LRSTS
storing recent samples. ba_sed on samples of $TM can deal with recent changes
When a tuplex,, is observed at current tima, z,, = quickly although overfitting may occur because of the small
(Sto, Xtorn;) iS added to the STM as the newest Samp|enumber of samples. To resol_ve this issue, OPOSSAM adapts
wheret, — t; — N. The sliding window stores recent LRSTS learned from the entire memory to LRSTS based on

recent samples of STM.

samples i . .
P Given model parametersy derived by Eq. (5) using
?:1 Z; (to < Lin) @ samples of the entire memory and time-series segment
to L. at current time step;, OPOSSAM derives model parameter
t=to—Lumin+1 Zt ( min < to)

. _ . w = (w1, ws, .- ,wp)T, which is adapted to STM. We can
where L,y is the length of the window. When samplg is  regard this approach as domain adaptation because the re-
added to STM for the case dfwin < lo, the oldest sample  gression model based on the entire memory can be regarded
Zto— L., Of STM is transferred to LTM. as the source hypothesis (i.e., regularization paranvetas

D. LTM: Long-term memory a prior model) and the regression model based on STM can

. . . be regarded as the target hypothesis. Analogously, we can
Given the maximum number of samples in both LTM andview the formulation as a Bayesian linear regression with a
STM as L., LTM needs to keep the number of samples -

ithin I, I b STM had. I w-mean Gaussian prior distribution.
within max — Lmin DECAUSE 8%/min SAMPIES. After we find the K nearest neighbors;,,s;,, - ,Si,
LTM considers non-redundancy and consistency instead %r s;, from the samples of STR] the formulation is based
freshness, and drops the following samples if the number of !

samples exceedby,,x — Lin: As described in Section IV-BK is set toIyry X r where Ity is

. . . the number of samples in LTM andis the ratio of nearest neighbors.
(A) Samples from dense regions rather than isolated points 25¢ gescribed in Section IV-BK is set tolgag x  Where Ispay is

for eliminating redundant information; and the number of samples in STM andis the ratio of nearest neighbors.



on biased-regularized least squares parameter values (i.e., variation afin Eq. (11)) asA; at

, 9 112 time stept.
rr‘1)‘1,n||y—XwH +Allw = Wil First, OPOSSAM mixes the predicted results based on
Siy Yii+N various regularization parameter values by weighting them
Si, Yig+N according to the current prediction error. Fore A, at
X=1|.1], y=1| . (8)  current time stept;, we denote the predicted value of the
' ’ regularized adaptation model a}t%f) The weighta, is
Sixc Yic+N defined as
where is the regularization parameter. The optimum model .
parametesw of Eq. (8) can be expressed from the first-order ay=1- IOSS(Qt(f), Y )y A E N, (12)

optimality condition in closed form .
whereloss(-M), ) rescales the range d@loss(-V),-)}xen,,

w=(X"X+ A1) X" (y - X"W) +%. (9 t1>

to [0, 1] linearly. The mixed predicted valuﬁ at time
If the value of the regularization parametgris close ¢ + N is then adjusted to
to zero, then LTM tends to be ignored and the regression
model is close to the LRSTS learned from samples of A(Afl ~(\)
. . = 13
STM. In contrast, if the value of\ is large, then STM Jntn AEZA ANy 4N AEZA O (13)
tq tq

tends to be ignored and the regression model is close to
the LRSTS learned from samples from the entire memoryThe variation of) is determined iteratively by the following
To adjust the relative importance between STM and LTM,procedure:

OPOSSAM learns the regression models by using various1 lculat ¢ o 1 \) f
values of \. However, Eq. (9) includes an inverse matrix, () calculate centern asm := > oxea, (axlogy A) from
and the calculation cost is high if we calculate it according current variationA; ar!d .

to A values from scratch. To reduce the calculation cost,(z) generate the next variatioy ., as

we were inspired by [28], and consider the singular value 10m=C_1om—C+1 ... 1gm+C
decomposition ofX = UDV” whereU is a K x K ’ B
orthogonal matrixD is a K x D diagonal matrix, an& is

a D x D orthogonal matrix. We then re-express the model o o ) )
parametew as The initial variationA; is generated inn = 0 as

whereC' is a constant numbelC(= 10 as default).

w=V D>+ A1) ' DU (y - X"%) +w.  (10) 107,107 *1 .. 10,
Furthermore, we decompose Eg. (10) for each row as Finally, OPOSSAM selects the final predicted value be-
d; tweeng)t(AfN, which is the mixed predicted value in Eq. (13),

w; = VU (y = XTW) +W;,

2+ X and At(aiN, which is the predicted value of LRSTS based
V..00---.0 on the entire memory, according to the predicted errors
! J 2 9
V= \5-/ W—’K_D (11) averaged over the recent,;, samples:

whered; is the singular value (i.e., thgh diagonal element ¢, , v =
of D in descending order) aid’; is 1 x K matrix where the t
jth row of V with K — D zero padding. Because OPOSSAM [ (A1) (o < Z loss(9.™™, ;) — loss(9{™), yt)>

precomputesl; and V/;UT (y — XTWw) + W, it can avoid e et T 1
r_ecomputing the inverse matrix for various values\ahany yt(?i)zv (otherwisg .
times. (14)

F. Integration of predicted values
9 P V. EXPERIMENTS

As described in Section IV-E, since the regularized adap-

tation model outputs multiple predicted values based on In this section, we first show the baseline methods and
various values of the regularization parameter, OPOSSAMhen confirm how the proposed mechanism affects the
needs to mix them appropriately based on recent trendgrediction using simple synthetic toy data. After that, we

In addition, OPOSSAM needs to select the final predicteccompare the accuracy of the proposed method with that
value from the value predicted by the regularized adaptationf the baseline methods on three real-world datasets in
model and the value predicted by LRSTS based on the entirdhe domains of traffic flow, stock prices, and electricity

memory. In the following, we denote the set of regularizationconsumption.



A. Baseline methods 2

We select the following baseline methods, which are
appropriate for forecasting short-range future values or
univariate data streams, and we compare these methods wi
the proposed metho©@POSSAM. For memory capacity 0 500 1000 © 000 T—-Z0e 3000
conditions, we set the minimum and maximum numbers of 2 Shiargeo e
samples to store in memory at 300 and 1000, respectivel *

(i.e., Lyim = 300 and L., = 1000). Unless otherwise ms \%
stated, the parameter settings of the baseline methods a Time-series 4
the same as those of OPOSSAM. s OPOSSAM W

ARWin is an existing method [8] based on linear re- ~°|+~—= NRWin1000
gression with adaptive window sizes. Following the au- ~°[[*_* NRWin300 !

thors’ suggestions, we set the variation of window sizes 1960 1980 2000 2020 2040
to 3,4,---,50. This is an existing linear online prediction
method that can handle concept drift. Figure 5. Effect of introducing LTM (top: synthetic data; bottom: closeup

. . ) of the most different part)
KRWin is an existing method [7] based on kernel ridge

regression with a sliding window of fixed size. We optimize
the meta-parameters using 1000-2000 steps for each dataset. , _ ) ,
We search the window sizes if800, 1000} according to Evaluation 1: Effect of introducing LTM
L.in and L,...3, and use radial basis function kernel We confirm the effectiveness of introducing LTM in
addition to STM. We use the synthetic data in Fig. 5 (top)
which contains sudden concept drift at steps 1000 and 2000,
and also includes recurring concept drift between steps 0—
1000 and 2000-3000. We compare the prediction results of
We search for the value of such that the median of OPOSSAM with NRWin1000 and NRWin300 because they
{yllxe — xe 1232999 1 000 IS in {10°};=_5 ;... » based on use LRSTS, which OPOSSAM also uses, and NRWin1000
the idea of [29], and search the regularization parametehas competitive accuracy as described later in Section V-C.
in {10'},—=_2 _1 ... 2. This is an existing non-linear online  Figure 5 (bottom) focuses on the most different part
prediction method with a sliding window. (range surrounded by red vertical lines in the top of Fig. 5)
NRWin is an existing method excluding the domain- @nd shows the prediction results. We find that, from when

specific parts in [9], and is the same as LRSTS with a fixedhe second sudden concept drift occurs to several steps
size sliding window. We prepare two windows which sizeslater, all of the methods have difficulty in forecasting.
are 300 and 1000 according fg,i, and Lu.., and denote However, the deviation is smaller for OPOSSAM than for

them as NRWin300 and NRWin1000 respectively. This is arthe comparison methods. The 9“’;‘3’ region in Fig. 5 gb_ottom)
existing online prediction method based on LRSTS. shows that OPOSSAM selectgl’,’y instead ofj, 'y in

NAWin is an existing method excluding the domain- Eq. (14). This indicates that OPOSSAM does not make STM

specific parts in [12], [13], and uses the mean among valugdominant in the gray region. In other words, OPOSSAM
for N steps ahead among similar time-series segments asPueferentially uses LTM for several steps after the second

predicted value. Other settings are the same as for NRwirsudden concept drift occurs. 3
This is an online prediction method based on similar time- 1 N€ above observation shows that OPOSSAM can utilize

series segments. the 0I(_JI information th_at appeared during steps 0-1000 when
recurring concept drift occurs from step 2000. In contrast,
the other methods discarded the old information because

) ) i ) they do not have LTM. Therefore, we find that OPOSSAM
B. Insight into mechanism of OPOSSAM on synthetic datg,;ijizes L TM effectively in the example.

kernel(x, x") = exp(—||x — x'||?). (15)

In this section, we confirm the effectiveness of the pro-Evaluation 2: Effect of regularization-based adjustment

posed mechanism by visualizing the prediction results using \we confirm the effectiveness of dynamically changing

three simple synthetic data streams. Each data stream {fie weights of the regularization parameter values in the
univariate (i.e..J = 1). In each data stream, we add a small

amount of noise based on a normal distribution with mean °“Because KRWin needs_ to store the gram matrix and the inverse matrix,
d standard deviation 0.01. and evaluate the forec the actual memory capacity that is required is on the ordgr of the_ square
Zero and stanaa Bt 35t the number of samples [7]. However, we search the window sizes by

for 3 steps ahead (i.ely = 3). matching the numbers of samples.
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Figure 7. Effect of maintaining consistency in LTM (top: synthetic data;
Figure 6. Effect of regularization-based adjustment (top: synthetic datamiddle: closeup of the most different part; bottom: projected samples in
middle: weights of regularization parameters; bottom: closeup of one of thanemory)
most different parts)

the regularization parameter to make LTM dominant during
regularized adaptation model. We use the synthetic data i@teps where it is difficult to forecast using only STM.
Fig. 6 (top), which consists of multiple connected straight The above observation shows that OPOSSAM can adjust
lines with recurring concept drift. As in the previous ex- the weights of the regularization parameter values in the
periment, we compare the prediction results of OPOSSAMegularized adaptation model effectively in this example,
with NRWin1000 and NRWin300. Unlike the previous ex- although the weights fluctuate without using a median filter.
periment, OPOSSAM always selectgiﬁlj\), in Eg. (14) in . S _ _
this experiment. Evaluation 3: Effect of maintaining consistency in LTM
Figure 6 (middle) shows changes in the weights of the We checked the effectiveness of the mechanism for main-
regularization parameters. The vertical axis is the logarithmaining consistency in LTM by using the synthetic data in
of the regularization parameter (i.éog,, A). Although each  Fig. 7 (top). These data are a sine curve that decreases
gray plot represents a regularization parameteof the linearly in amplitude from 10 to 1, and includes incremental
highest weighta,, in Eq. (12), the changes fluctuate and it and recurring concept drift. In addition, we add three anoma-
is difficult to find a trend despite the simplicity of the data. lies wherey, = 20 at each steg = 500, 1000, 1500. We
For this reason, we apply a median filter of window sizemodify OPOSSAM so that the samples are compressed as
100 and show the results as blue plots. This shows that theentroids by k-means++ clustering in the same way as SAM
regularization parameters tend to be adjusted to high valug8], [4] instead of the mechanism described in Section IV-D.
several steps after the straight line bends. This is becauseWe denote the modified version &POSSAMkm, and
is difficult to forecast this kind of step from only the recent compare it with OPOSSAM.
data of STM and OPOSSAM increases the importance of Figure 7 (middle) focuses on the last 1000 steps (range
LTM to utilize old similar information. surrounded by red vertical lines in the top of Fig. 7), where
For several steps after a straight line bends, forecasting iso anomalies are present, and shows the prediction results.
difficult and the prediction results differ most significantly We find that it is difficult for OPOSSAMkm to forecast
among the methods. Figure 6 (bottom) focuses on one ddround the steps wherg (the value on the vertical axis
the parts (range surrounded by red vertical lines in the tofin the middle of Fig. 7) is close to zero. This is because
and middle of Fig. 6) and shows the prediction results. WeEOPOSSAMKkm cannot remove the anomalies from LTM
find that deviation is smaller for OPOSSAM than for the and applies LRSTS to samples including the anomalies. In
comparison methods. This is because OPOSSAM adjustontrast, OPOSSAM can make a correct forecast because



it removes anomalous samples by the mechanism for mairdata streams with concept drift. To our knowledge, this is
taining consistency in LTM. the first time LTM has been used for online prediction of

Here we confirm in detail the information discusseddata streams with concept drift, and we focus on evaluation
above. Figure 7 (bottom) shows the samples from thefter LTM has stored enough samples. For this reason, we
STM* LTM in OPOSSAM, and LTM in OPOSSAMkm, skip the first 1000 steps and evaluate the remaining steps
respectively at the last step. For each sample = in each dataset. We evaluate the forecasting results for 1,
(Xi_ 4y X, X5, yi+3), the value of the horizontal axis 3, and 5 steps ahead (i.€V, = 1, 3,5) as prediction steps.
is the value ofx]_,, the value of vertical axis is the value Because OPOSSAM involves a random sampling process,
of x}, and the color corresponds to the value f.3, the results may vary between different runs, and we repeat
respectively. Although there are no anomalous samples ithe experiments 10 times on each dataset and state the mean
LTM of OPOSSAM, there are anomalous samples arounaf the results.
(x/_4,x}) = (0,0) (dark blue points in the bottom of Fig. 7)  3) Experimental results:As shown in Table |, OPOS-
in LTM of OPOSSAMKm. SAM achieves the best performance in most cases. OPOS-

The above observation shows that OPOSSAM can mainSAM has the best average ranks of 1.66, 1.18, and 1.00
tain consistency by keeping not only old but also importantcrossing both datasets and prediction steps for RMSE,
samples in LTM. In contrast, the existing mechanism [3],MAE, and MdAE, respectively. The second-best method
[4] based on k-means++ clustering cannot maintain consistor OPOSSAM is NRWin1000, and the average ranks are
tency although it can keep old samples. Through the abové.71, 1.82, and 2.22 crossing both datasets and prediction
evaluations 1-3, we find that the mechanism of OPOSSAMsteps for RMSE, MAE, and MdAE, respectively. We ran the
is effective for forecasting in those examples. well-known Wilcoxon signed rank test against all baselines

_ and found that all results are statistically significant at

C. Comparison results of accuracy on real-world datasetsp — 0.0000. For this reason, we find the following for the

1) Real-world datasetsWe use the following real-world datasets:

data in each domain as univariate data streams, and remove, | RSTS, which OPOSSAM also uses as a base predic-

missing values beforehand. tor, is effective for forecasting short-range values if we
Traffic is the average traffic speed on a freeway operated  can find appropriate window sizes; and
by the California Department of Transportaffott is widely « OPOSSAM, which is an extended method from LRSTS

used in traffic flow prediction [6], [9]. We use data observed to deal with concept drift, achieves superior accuracy
at the traffic detector VDS:407750 from 1 October 2017 t0  gyer baseline methods.

2 December 2017. Each step interval is 5 min. We use only
the Lane 1 Speed (mph) column. The total number of steps VI. CONCLUSION
is 18,143, and there are no missing values.
Stock is the closing price of 225 Japanese representative In order to accurately forecast short-range future values
companies listed on the Tokyo Stock Exchaghdewas used On various data streams under heterogeneous concept drift,
to evaluate ARWin in [8]. In the same way as [8], we usewe introduced adaptive memory management, consisting
the Close column only. The period is from 19 May 1997 toof STM and LTM, to online prediction, and proposed
15 May 2017. Each step interval is 1 day. The total numbePOSSAM. The predictor is based on local regression of
of steps is 5046 including 143 missing values. similar time-series segments, and the memory management
Electricity is the electric consumption for a single residen-is inspired by SAM, which is a classification method for
tial customer in Frande[30]. The consumption measure- Self-adjusted memories in both STM and LTM. OPOSSAM
ments were gathered between December 2006 and Noverftanages LTM by reducing redundant samples with large
ber 2010 with 1 min resolution. We use only the Voltageprediction errors to maintain consistency within the max-
column. Each step interval is 1 min. The total number ofimum memory capacity. In addition, OPOSSAM adjusts
steps is 2,075,259 including 25,979 missing values. the prediction model for recent trends by regularization-
2) Experimenta| setupWe measure accuracy using the based adaptation from a prior model learned using the
three metrics of Root Mean Squared Error (RMSE), Mearﬁntire memaory. This regularization-based adaptation can be
Absolute Error (RAE), and Median Absolute Error (MdAE). efficiently precomputed when adjusting various values of
The metrics are measured in an interleaved test-then-traiffie regularization parameter. In the experiments, we showed
or prequential manner, which is standard for evaluation ofuperiority in accuracy. We demonstrated that the proposed
mechanism is effective for simple synthetic datasets, and
:The_ samples in STM are the same for OPOSSAM and OPOSSAMkmconfirmed that OPOSSAM is statistically superior to several
http://pems.dot.ca.gov/ baseline methods in terms of accuracy on three real-world

Shttps://finance.yahoo.com/quote/%5EN225/ . . . ..
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+ qatasets' traffic flow, stock prices, and electricity consump-

power+consumption tion.



Table |

PREDICTION PERFORMANCE COMPARISON ONREAL-WORLD DATASETS

Dataset Method 1 step ahead forecast 3 steps ahead forecast 5 steps ahead forecast

RMSE [ MAE [ MdJAE RMSE [ MAE MdJAE RMSE [ MAE [ MdAE
OPOSSAM [ 1.2992 (1) | 0.5788 (1) | 0.2655 (1) | 2.2149 (1) 0.9259 (1) [ 0.3755 (1) | 2.7185 (1) | 1.1116 (1) | 0.4136 (1)
ARWIn 1.4538 (3) | 0.6679 (3)| 0.3017 (3) | 2.6787 (3) | 1.2137 (3) | 0.5171 (6) | 3.7245 (3) | 1.6646 (5)| 0.6790 (6)
NRWin1000 | 1.4356 (2) | 0.6150 (2) | 0.2778 (2) | 2.6621 (2) | 1.0497 (2) | 0.3902 (2) | 3.7070 (2) | 1.3525 (2) | 0.4338 (4)
Traffic NRWIn300 | 2.0819 (5)| 0.7439 (4) | 0.3078 (4) | 3.9015 (6) | 1.2971 (4) | 0.4328 (5) | 5.0048 (7) | 1.6487 (4) | 0.4868 (5)
NAWIn1000 | 3.9302 (7) | 1.4246 (7)| 0.3280 (6) | 4.2880 (7) | 1.6206 (7) | 0.4050 (4) | 4.5954 (6) | 1.7586 (6) | 0.4320 (3)
NAWIN300 | 3.0232 (6) | 1.0870 (6) | 0.3133 (5) | 3.7075 (5) | 1.3632 (5) | 0.3933 (3) | 4.2516 (5) | 1.5515 (3) | 0.4233 (2)
KWRin 1.7166 (4) | 0.9047 (5)| 0.4305 (7) | 2.9313 (4) | 1.5709 (6) | 0.6705 (7)| 4.0727 (4)| 2.1735 (7)| 0.8418 (7)
OPOSSAM | 200.35 (1) | 142.90 (1) | 106.14 (1) | 347.73 (1) | 252.50 (1) | 190.39 (1) | 444.58 (1) | 331.09 (1) | 259.53 (1)
ARWin 217.63 (3) | 156.52 (3) | 116.87 (4) | 398.31 (3) | 291.65 (3) | 217.14 (3) | 548.54 (3) | 405.62 (4)| 310.29 (4)
NRWin1000 | 204.90 (2) | 144.48 (2) | 107.11 (2) | 352.06 (2) | 257.52 (2) | 199.34 (2) | 463.63 (2) | 343.89 (2) | 268.67 (2)
Stock NRWIn300 | 223.41 (4)| 157.41 (4)| 115.42 (3) | 405.81 (4) | 293.31 (4) | 218.03 (4) | 551.53 (4)| 398.17 (3) | 300.07 (3)
NAWIn1000 | 689.12 (6) | 452.54 (6) | 260.75 (6) | 754.99 (7) | 524.43 (6) | 340.12 (6) | 817.32 (7) | 585.07 (6) | 398.55 (6)
NAWIN300 | 413.11 (5) | 279.33 (5) | 190.55 (5) | 515.89 (5) | 370.75 (5) | 276.14 (5) | 601.68 (5) | 442.53 (5) | 338.49 (5)
KWRin 704.42 (7) | 547.84 (7)| 447.71 (7) | 749.19 (6) | 582.47 (7) | 476.09 (7) | 792.83 (6) | 616.26 (7) | 504.68 (7)
OPOSSAM | 0.6045 (2) | 0.4348 (1) | 0.3176 (1) | 1.2676 (6) | 0.7440 (2) | 0.5613 (1) | 14.269 (7) | 0.9110 (2) | 0.6897 (1)
ARWin 0.6936 (4) | 0.5032 (4)| 0.3705 (4) | 1.0839 (2) | 0.8035 (3)| 0.6086 (3) | 1.3454 (4)| 1.0081 (5) | 0.7750 (4)
NRWin1000 | 0.6040 (1) | 0.4363 (2) | 0.3203 (2) | 1.0032 (1) | 0.7429 (1) | 0.5635 (2) | 1.2105 (1) | 0.9027 (1) | 0.6959 (2)
Electricity | NRWIin300 | 0.6627 (3) | 0.4784 (3)| 0.3521 (3) | 1.1537 (4) | 0.8392 (5) | 0.6294 (5) | 1.4368 (5)| 1.0398 (6) | 0.7824 (6)
NAWIn1000 | 0.8730 (5) | 0.6170 (5)| 0.4411 (5) | 1.1259 (3) | 0.8300 (4) | 0.6252 (4) | 1.2807 (2) | 0.9571 (3)| 0.7341 (3)
NAWIN300 | 0.8812 (6) | 0.6300 (6) | 0.4537 (6) | 1.1632 (5) | 0.8638 (6) | 0.6560 (6) | 1.3382 (3)| 1.0053 (4) | 0.7757 (5)
KWRin 1.4684 (7) | 1.1272 (7)| 0.8962 (7) | 1.5578 (7) | 1.1955 (7) | 0.9503 (7)| 1.6374 (6) | 1.2568 (7)| 0.9986 (7)
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